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A B S T R A C T

Ecological indicators are often collected to detect and monitor environmental change. Statistical models are used
to estimate natural variability, pre-existing trends, and environmental predictors of baseline indicator condi-
tions. Establishing standard models for baseline characterization is critical to the effective design and im-
plementation of environmental monitoring programs. An anthropogenic activity that requires monitoring is the
development of Marine Renewable Energy sites. Currently, there are no standards for the analysis of environ-
mental monitoring data for these development sites. Marine Renewable Energy monitoring data are used as a
case study to develop and apply a model evaluation to establish best practices for characterizing baseline eco-
logical indicator data. We examined a range of models, including six generalized regression models, four time
series models, and three nonparametric models. Because monitoring data are not always normally distributed,
we evaluated model ability to characterize normal and non-normal data using hydroacoustic metrics that serve
as proxies for ecological indicator data. The nonparametric support vector regression and random forest models,
and parametric state-space time series models generally were the most accurate in interpolating the normal
metric data. Support vector regression and state-space models best interpolated the non-normally distributed
data. If parametric results are preferred, then state-space models are the most robust for baseline character-
ization. Evaluation of a wide range of models provides a comprehensive characterization of the case study data,
and highlights advantages of models rarely used in Marine Renewable Energy environmental monitoring. Our
model findings are relevant for any ecological indicator data with similar properties, and the evaluation ap-
proach is applicable to any monitoring program.

1. Introduction

Statistical models are commonly fit to ecological indicator data to
detect and measure change in environmental monitoring programs, but
observed patterns are potentially affected by the choice of model used
to analyze data (e.g., Jones-Farrand et al., 2011; Olden and Jackson,
2002; Thomas, 1996). Ecological indicators characterize ecosystem
attributes such as structure, composition, and function (Niemi and
McDonald, 2004; Noss, 1990) that vary over time or location. An in-
dicator can be measured directly or derived from metrics to serve as
proxies for indicators (e.g., counts, concentrations, rates). Statistical
models can then be applied to indicator or metric data to characterize
baseline conditions, which includes estimation of pre-disturbance
variability, data trends, and relationships between biotic and abiotic
components of the environment (Treweek, 1996, 2009). Quantifying
baseline conditions enables the design of operational monitoring pro-
grams that measure change caused by known disturbances (Schmitt and

Osenberg, 1996; Treweek, 2009). By standardizing indicators and
models used to analyze ecological baseline data, uncertainty in as-
sessment of environmental change is reduced and sites can be compared
across time and locations.

In terrestrial and aquatic ecosystems, ecological indicators are used
to quantify ecosystem change in response to disturbances. Examples
include climate change (Ainsworth et al., 2011), resource harvest (e.g.
commercial fisheries; Large et al., 2013), and human activity− ranging
from population growth to acoustic disturbances (Andrews et al.,
2015). For monitoring programs, indicators need to be evaluated with
models to develop standards for quantifying anthropogenic effects on
the environment. Anthropogenic disturbances to ecosystems result from
the addition or cessation of human activity with positive or negative
effects. One example of an anthropogenic activity that may impact
aquatic ecosystems is marine renewable energy (MRE; see Table A1 for
the list of defined abbreviations) technologies, including offshore wind
turbines, surface wave energy convertors, and tidal stream turbines.
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With the exception of offshore wind operations, current MRE devel-
opment is largely demonstration scale (e.g., 1–2 devices installed for
testing and validation), rather than commercial enterprises that are grid
connected. In the United States, the lack of commercial scale MRE
projects is partially attributed to the uncertainty associated with en-
vironmental effects of MRE development. At this time, there are no
standard monitoring requirements for baseline or operational mon-
itoring of MRE sites within the United States and other nations
(Copping et al., 2016).

In an effort to ensure efficient, comparable, and informative mon-
itoring programs, initial guidelines have been developed for MRE
monitoring study design and data collection. These guidelines empha-
size the use of ecological indicators to assess change caused by MRE
development (Boehlert et al., 2013; Klure et al., 2012). Indicators re-
commended for measuring change include abundance, distribution,
diversity, and behavior (Niemi and McDonald, 2004; Noss, 1990) of
ecosystem components that may be affected by development, including
marine mammals, birds, fish, and habitat (Boehlert et al., 2013; Klure
et al., 2012; McCann, 2012). Common methods to collect metrics that
serve as proxies for indicators, such as abundance counts, diversity
indexes, location measurements, include trawl, acoustic, and optical
surveys (Klure et al., 2012; McCann, 2012; Polagye et al., 2014). De-
spite recommendations of indicator use, current guidelines lack best
practices for analyzing indicator or metric data. Previous efforts to
analyze MRE monitoring data have been narrow in scope, usually re-
stricted to generalized regression models. We define generalized re-
gression models to include linear regressions (e.g., Hammar et al., 2013;
ORPC, 2014), semi- or parametric generalized linear (mixed) models
(GLMMs) (e.g., Bergström et al., 2013; Embling et al., 2013; Stenberg
et al., 2015), and generalized additive (mixed) models (GAMMs) (e.g.,
Benjamins et al., 2016; Mackenzie et al., 2013). These models have
been used to characterize baseline conditions and to predict effects of
MRE development on those conditions (e.g., Duck et al., 2006; Tollit
and Redden, 2013; Viehman et al., 2015). The use of semi- and full
parametric models for monitoring is constrained due to the limited
range of error distribution assumptions, and a required parametric re-
lationship between predictors and response variable.

An evaluation of a wider range of model classes is needed to es-
tablish best practices when analyzing environmental data to establish
baselines for ecological indicators. Time-series and nonparametric
models differ from generalized regression models, and yet are equally
capable of fitting indicator data, predicting environmental effects, and
measuring change. Evaluating the ability of generalized, time series,
and nonparametric regression models to characterize ecological time
series data is necessary to recommend best practices. We use data from
a proposed MRE site as a case study for model evaluation, but because
this framework is general, the models and methods presented here are
applicable to a wide range of monitoring programs and indicators.
Establishing best practices for characterizing baseline conditions de-
creases site characterization and operational monitoring costs, enables
comparison among sites, and reduces uncertainty in environmental
assessments.

2. Methods

2.1. MRE baseline case study

The case study baseline data was collected at a tidal turbine pilot
project site proposed by the Snohomish County Public Utility District
No. 1 from May 11 to June 8, 2011 (Horne et al., 2013). The site is
located ∼1 kilometer off Admiralty Head, Puget Sound Washington
(48.18° N, −122.73° W), at a depth of ∼60 m (Public Utility District
No. 1 of Snohomish County, 2012). The project would deploy two, 6 m
Open Hydro turbines (http://www.openhydro.com/). Active acoustic
backscatter data recorded using a 120 kHz BioSonics DTX echosounder
mounted on a Sea Spider platform is assumed representative of a

primary monitoring method that would be deployed throughout the life
of an MRE project. Acoustic backscatter is representative of nekton (i.e.,
macro-invertebrates and fish that move independently of fluid motion)
density within the water column (Maclennan et al., 2002). The echo-
sounder sampled at 5 Hz for 12 min every 2 h, and a −75 dB re 1m−1

threshold was applied to the data to remove noise (Horne et al., 2013).
Data values were constrained to 25 m from the bottom, a height cor-
responding to twice that of the proposed OpenHydro tidal turbine.

A suite of metrics derived from the acoustic backscatter data are
available to quantify nekton density and vertical distribution in the
water column (cf. Burgos and Horne, 2007; Urmy et al., 2012). Two
metrics were chosen to represent MRE monitoring data: mean volume
backscattering strength (Sv) (dB re 1 m−1) and an aggregation index
(AI) (m−1). Both metrics are continuous, display periodic autocorrela-
tion (Jacques, 2014), and are trend-stationary (i.e., statistical data
properties are constant over time, assuming that the periodicity and
trend in the data are associated with deterministic environmental
variables). These two metrics serve as proxies of abundance and be-
havior, which are indicators of nekton structure and function (cf.,
Niemi and McDonald, 2004; Noss, 1990; Wiesebron et al., 2016). Sv
data serves as a proxy for nekton density and are normally distributed.
The AI data measures animal patchiness, are non-normal, right-skewed,
and composed primarily of low aggregation values with spikes of high
aggregation (Fig. 1). The terms low state and high state will be used to
refer to the two magnitudes of AI values. These metrics are considered
representative of MRE baseline data, because MRE monitoring guide-
lines consider fish a primary receptor (i.e., ecosystem component that
responds to change) of MRE environmental stressors (i.e., external
events or features associated with MRE development) (e.g., Boehlert
et al., 2013; Klure et al., 2012; McCann, 2012).

Ancillary environmental measurements collected during Admiralty
Inlet surveys (cf. Jacques, 2014) were used as potential covariates in
the candidate models. Daily tidal range (m), tidal speed (m/s), and
Julian day of year were matched to each time stamp from May 11th
through June 8, 2011. Tidal range was calculated as integrated tidal
speed through the day (Jacques, 2014). A Fourier series defined by a
24 h period was also included as an environmental variable to represent
time-of-day.

2.2. Evaluation approach

We developed an evaluation to assess the ability of statistical
models to characterize baseline environmental conditions that identify
potential effects of MRE development and to accurately measure effects
during operations. The approach is intended to evaluate data varia-
bility, trends, and relationships between components of the environ-
ment. We used cross-validation as a model selection tool to quantify
interpolation accuracy (i.e., ability to predict data within the range of
the empirical data) (Hastie et al., 2009). This approach ensured an
equal assessment of model accuracy across all statistical model classes
(parametric v. non-parametric), while at the same time, parameterized
all candidate models to have the greatest probability of success in ac-
curately characterizing the data. Residual diagnostics were used to as-
sess the validity of model error distribution and autocorrelation struc-
ture assumptions. The 10-fold cross validation model selection and
residual diagnostics provide estimates of model fit accuracy and re-
sidual variability. Patterns in selected covariates among models were
interpreted as trends and important predictor variables of the indicator
data. Results from the evaluation were then used to recommend model
(s) most capable of characterizing normally and non-normally dis-
tributed monitoring data. All analyses were conducted using the R
v.3.1.2 statistical software environment (R Core Development Team,
2014).
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2.3. Candidate model classes

Statistical models evaluated include: generalized regression models,
time series regression models, and non-parametric regression models
(Table 1). Unlike generalized regression models used in MRE mon-
itoring studies (c.f., ORPC, 2014; Tollit and Redden, 2013; Viehman
et al., 2015), time series models are structured to potentially estimate
autocorrelation, stationary properties, and process error variance (i.e.,
natural variability in the true state of the population), and/or ob-
servation error (Pattengill-Semmens et al., 2011). Time series models
may be deterministic or stochastic (i.e., do not assume a fixed trend and
include lagged dependent variables to model the process) (Chandler
and Scott, 2011). Unlike parametric models, nonparametric models do
not have predetermined functional forms, they do not require a theo-
retical data distribution or assume linearity, and instead use the data to
develop the variable relationships in the model. Nonparametric models
have been recommended when little is known a priori about the data,
and when accurate predictions of response variables are needed
(Gitzen, 2012). All equations and parameter definitions are detailed in
Appendix B. A summary of specific model parameterizations can be
found in Table B1. Sample data and model fitting code are provided in
Appendices C and D in Supplementary material.

Linear regression and Generalized-Least-Squares (GLS) regression
are traditional methods used to detect change in Before-After Control-
Impact (BACI) monitoring studies (Stewart-Oaten and Bence, 2001;
Wagner et al., 2002). Specifically, an analysis of variance (i.e., ANOVA)
is considered a special case of a linear regression often used to estimate
the statistical significance of BACI factor variables and their interac-
tions (Hewitt et al., 2001). A GLS model can account for autocorrelation
(Pinheiro, 2000), while linear regression models typically do not.
Therefore, both a linear regression and a GLS model were included in
the generalized regression class of candidate models. Generalized
Linear Models (GLMs) were also included within the generalized re-
gression class of candidate models because they are an extension of
linear regressions that are not constrained to assume normally dis-
tributed data. A GLM can be extended to a Generalized Linear Mixed
Model (GLMM) to additionally account for autocorrelation within the
structure of a mixed-effects model (Pinheiro, 2000). We only con-
sidered GLMs and GLMMs for non-normal (i.e., AI) data. Generalized
Additive (Mixed) Models (GA(M)Ms) were the most complex candidate
models evaluated as members of the generalized regression model class.
GAMs and GAMMs are semi-parametric extensions of GLMs (Wood,

2006). In addition to parametric covariates, GAMs and GAMMS include
nonparametric smoother functions of predictor variables to model
nonlinear relationships (Wood, 2006).

Within the class of time series models, a Regression-Autoregressive-
Moving-Average (Reg-ARMA) model was included, because an ARMA
model is a traditional time series model that is commonly used for
modeling stochastic trends (Chandler and Scott, 2011; Chatfield, 1989).
To date, an ARMA model has not been used in MRE biological mon-
itoring studies. The ARMA model was formatted as a Reg-ARMA to
model dependent data using environmental predictors in addition to
lagged, dependent values (Hyndman, 2015). A Regression-Auto-
regressive-Moving-Average-Generalized-Autoregressive-Conditional-
Heteroskedasticity (Reg-ARMA-GARCH) model was also included as a
candidate time series model. GARCH models can be viewed as exten-
sions of ARMA models that are applicable for modeling time series with
heteroskedastic variance, such as the AI data. GARCH models have been
previously identified as a possible analytic tool for tracking MRE
monitoring data over time (Horne et al., 2013). The GARCH model used
in the evaluation was formatted as a Reg-ARMA-GARCH model to in-
clude environmental predictors. When independent predictor variables
are included in an ARMA-GARCH model, the model becomes a linear
regression with errors estimated using an ARMA model, and the var-
iance of the residuals estimated using the GARCH model (Ruppert,
2011). Lastly, a univariate autoregressive state-space model (SSM) was
included as a candidate model within the time series model class. An
ARMA process may be structured as a SSM, but a SSM can also be ex-
tended to directly estimate more complicated time series elements such
as: multivariate data, nonstationary trends, missing observations, and it
explicitly partitions the total variance into process (i.e., stochastic) and
observation (i.e., measurement) errors (See and Holmes, 2015). A SSM
is a dynamic time series model that has been widely used (e.g., eco-
nomics, engineering, and ecology; Holmes et al., 2012), including
characterization of the acoustic baseline data from Admiralty Inlet
(Jacques, 2014).

Two forms of SSMs were used in the evaluation, one with fixed low
observation error and estimated high process error (SSM-P) and the
other with fixed low process error and estimated high observation error
(SSM-M). We assumed that sources of observation error are due to ca-
libration and hydrographic conditions based on the case study data
collection methods (Simmonds and MacLennan, 2005), and both
sources have been suggested to equate to a maximum of 5% of the total
error. Therefore, the SSM-P was structured with fixed observation error

Fig. 1. Acoustic-based metric values derived from
data collected from May 11th to June 8, 2011 in 2 h
intervals. (a) Normally distributed nekton density
(Sv dB re 1 m−1) and (b) non-normal aggregation
index values (AI m−1) ranging from 0 to 1 that
consisted of low index values with higher value
spikes through the series.
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of 10% of the total error for the normal and non-normal data set, while
the SSM-M was structured with fixed process error that equated to 10%
of the total error.

A Random Forest (RF) and Support Vector Regression (SVR) are
machine learning algorithms (i.e., models that are structured to predict
data patterns given a training set of data) that were included in the
model evaluation as candidate nonparametric models. The regression
forms of these candidate models originally stem from a RF classification
model (Brieman, 2001) and Support Vector Machine (SVM) classifica-
tion model (Vapnik et al., 1997). A Random Forest is a collection of
statistical decision trees applied to random bootstrap samples of data
that are averaged to produce predicted values (Liaw and Wiener, 2002).
In comparison, a SVR uses a specified kernel function to map data into a
higher dimensional space to produce a linearly separable regression
(Cortes and Vapnik, 1995; Hsu et al., 2010). A Linear kernel SVR (SVR-
L) and a Radial-Basis-Function kernel (SVR-RBF) were used as candi-
date models in the evaluation. RF models have previously been used to
characterize the importance of environmental factors and forecast
species distribution in wind renewable energy biological monitoring
studies (e.g., Belaire et al., 2014; Hayes et al., 2015). Unlike RF models,
SVR models have not previously been used in MRE biological mon-
itoring studies, but they are commonly used for species distribution
modeling (e.g., Drake et al., 2006; Lorena et al., 2011).

2.4. Model selection

10-fold Cross-validation (CV) model selection was used to select the
optimal structure of each model, and to compare the accuracy of
parameterized candidate models. In 10-fold CV, 10 equally-sized,
random subsets of data are used repeatedly such that 9 subsets compose
a training-set and a single subset is used as the test-set to produce a total
of 10 training and test datasets. Predicted values from the model ap-
plied to the test-sets are used to calculate an average Root-Mean-
Squared-Error (RMSE). RMSE is a measure of model accuracy based on
the average deviance of model predicted values ( ŷi) from observed
values (yi):

∑ −
=

n
y y1 * ( ˆ )

i

n

i i
1

2

(1)

where i is the observed ith value, and n is the sample size. A RMSE value
closer to 0 indicates a more accurate data interpolation. CV has been
recommended when there is not high a priori knowledge of model
structure, and the goal is to interpolate within the data range (Gitzen
et al., 2012). The use of 10 subsets in a cross validation has been sug-
gested as the most effective number of training/test sets for model se-
lection (Arlot and Celisse, 2010; Hastie et al., 2009), providing a bal-
ance between bias (i.e., a model that underfits data), and variability
(i.e., a model that overfits data) (James et al., 2015).

We performed model selection on 24 versions of each candidate
model to identify the optimal structure, before comparing the perfor-
mance across models. Rather than including all possible interactions of
model covariates, a set of models based on a priori knowledge of the
biological system (Burnham and Anderson, 2002) were selected.
Covariates used in each model included Julian day, tidal range, tidal
speed, and a Fourier series defined by a 24 h period. All covariates were
demeaned (i.e., sample mean subtracted from covariate values) before
analysis. We considered two-way interactions: Julian day-tidal speed,
Julian day-tidal range, tidal speed-tidal range, and tidal speed- 24 h
period, but three-way interactions were not considered. All possible
combinations of the covariates and specified two-way interactions
produced 24 versions of each candidate model. All combinations of the
24 covariates were evaluated (576 model versions) within the two-part
state-space and reg-ARMA-GARCH models because combinations of
covariates may equally affect both the process and observation of the
response in a SSM, and the reg-ARMA-GARCH model allows forTa
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covariates in both the conditional mean and variance equation.
The model selection protocol in this study is based on the strategy

developed by Diggle et al. (1994) and Wolfinger (1993), and used in
Zuur et al. (2009). The residual variance structure was determined prior
to selecting predictor variables during model selection (Diggle et al.,
1994; Wolfinger, 1993). Initially, the optimal autocorrelation structure
was deduced using the 10-fold CV method and the full version of each
candidate model (i.e., all main effects and interactions, Zuur et al.,
2009). Then, 10-fold CV was used to select the optimal structure of
predictor variables. The Autoregressive Moving Average (ARMA) cor-
relation structure selection included all combinations of autoregressive
(AR) and moving average (MA) lagged variable values ranging from 0
to 3. ARMA error structures with an AR or MA lag value larger than 3
tend not to converge and may not be necessary to model autocorrela-
tion (Schabenberger and Pierce, 2002; Zuur et al., 2009). The number
of lagged variables in the nonparametric models was selected prior to
the covariate structure. Autocorrelation Function (ACF) plots of the
detrended data indicated that autocorrelation was no longer present
after 50 data points for the normal data and after 62 data points for the
non-normal data. To be consistent in the selection process, 0 to a
maximum of 62 lags were included in the non-parametric model se-
lection for both normal and non-normal datasets.

Nonparametric models included an additional model selection for
tuning parameters (i.e., parameters that control the training algorithm).
The Random Forest regression has three tuning parameters: node size,
number of trees, and number of predictor variables (mtry) (Breiman,
2001). The nodesize was set to 5 data points, as it has little effect on the
fit of a Random Forest model (Gutiérrez et al., 2011; Ishwaran and
Malley, 2014). The number of trees and value of mtry were selected
using 10-fold CV. The default value of number of trees, 500, was in-
creased by steps of 500 until the RMSE value stabilized. The mtry
parameter was stepped from the default value of p/3, where p is the
number of predictor variables, +/− 2 units until the RMSE value no
longer decreased (Liaw and Wiener, 2002). The Support Vector Re-
gression included kernel tuning parameters. The SVR-L and SVR-RBF
models include a cost tuning parameter, and SVR-RBF also includes a
gamma tuning parameter (see Appendix B). Both parameters affect
bias-variance tradeoffs within the SVR (Hastie et al., 2009). An iterative
10-fold CV grid search of cost values ranging from 2−5 to 215 by a factor
of 22 and gamma values ranging from 2−15 to 23 by a factor of 22 was
used (cf. Berk, 2008; Hsu et al., 2010). At each iteration a finer grid

search, ranging from the optimal parameter value from the previous
iteration +/− a factor of 22, was repeated until the RMSE value
reached a minimum.

2.5. Model evaluation

The ability of selected models to characterize baseline data was
evaluated by examining model fit, covariate selection, and residual
diagnostics. RMSE metrics were ranked from smallest to largest to as-
sess model ability to accurately interpolate baseline data. Percent re-
lative RMSE (% rRMSE) values were calculated as the percent differ-
ence in a model’s average RMSE relative to the minimum average RMSE
value to provide an interpretable scaling of results. Consistency of en-
vironmental covariates across candidate models was used to identify
potentially important predictor variables of nekton density and ag-
gregation, and to indicate a model’s ability to identify these variables.
Residual diagnostics, including an inspection for homogeneity and in-
dependence using residual and ACF plots, were conducted by refitting
the final version of each candidate model to the entire dataset.

3. Results

3.1. Model accuracy

The more complex and flexible nonparametric and stochastic time-
series models more accurately interpolated baseline nekton density
(i.e. Sv) data, based on average RMSE, than the more simplistic de-
terministic parametric models (Table 2). The SVR-RBF model produced
the most accurate interpolation of the data based on its average RMSE
value of 3.05. The other non-parametric models, RF and SVR-L, pro-
duced the successive best interpolations of the data with corresponding
average RMSE values that were 3.48% and 5.54% higher than SVR-RBF.
The most flexible linear parametric models, SSM-P and SSM-M, were
the next most accurate candidate models. The semi-parametric GA(M)
Ms produced better interpolation of the data than all other determi-
nistic parametric models, consistent with ranked order from most to
least flexible candidate models. The simplest candidate models, GLS
and linear regression, had the worst interpolative accuracy (∼16%
rRMSE).

Unlike the model selection results for nekton density, the candidate
models’ ability to accurately interpolate nekton aggregation index (i.e.

Table 2
Average Root-Mean-Squared-Error (RMSE) and corresponding percent relative RMSE (% rRMSE) ranked order accuracy of each parameterized candidate model from the 10-fold Cross-
Validation model selection for the Sv data, including environmental predictors, autocorrelation structure, and presence of autocorrelation in the residual ACF plots.

Model Average RMSE % rRMSE Environmental Predictors Auto-correlation Structure
(AR,MA)

Residual Auto-correlation

SVR-RBF 3.05 (0.147) 0 Day, Fourier Series, Tidal Range, Tidal Speed (1,0) Yes
RF 3.16 (0.274) 3.48 All Environmental Predictors (14,0) No
SVR-L 3.22 (0.313) 5.54 Fourier Series (13,0) No
SSM-P 3.30 (0.238) 8.12 Process Equation: Day, Fourier Series, Tidal Range (1,0) Yes

Observation Equation: Day, Tidal Range, Day-Tidal Range
SSM-M 3.34 (0.239) 9.49 Process Equation: Tidal Range, Tidal Speed, Tidal Speed-Tidal

Range
(1,0) Yes

Observation Equation: Day, Fourier Series, Tidal Speed
GAM 3.43 (0.190) 12.36 Day, Fourier Series, Tidal Range†, Day:Tidal Range† NA Yes
GAMM 3.45 (0.190) 13.08 Day, Fourier Series, Tidal Range† (1,0) Yes
Reg-ARMA-GARCH 3.53 (0.169) 15.69 Mean Equation: Day, Fourier Series, Tidal Range, Day: Tidal

Range
ARMA:(1,0) Yes

Variance Equation: Day, Fourier Series, Tidal Range, GARCH:(2,3)
Reg-ARIMA 3.54 (0.168) 15.94 Day, Fourier Series, Tidal Range, Day: Tidal Range (1,0) Yes
GLS 3.54 (0.161) 16.03 Day, Fourier Series, Tidal Range, Day: Tidal Range (1,0) Yes
LM 3.54 (0.163) 16.09 Day, Fourier Series, Tidal Range, Day: Tidal Range NA Yes

Notes: Models are ranked in descending order of average RMSE and associated variances of average RMSE are shown in parenthesis. The number of autoregressive (AR) and moving-
average (MA) variables in model autocorrelation structures is shown in parenthesis as (AR, MA). The specified (AR, MA) structure of the nonparametric models indicates the number of
lagged dependent variables included in the parameterized models. The environmental predictors are listed in alphabetical order of main effects followed by interactions. The Tidal Range†

predictor is parametric in the GA(M)Ms.
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AI) data was not ranked in a consistent descending order of model
complexity, and relative difference in interpolation accuracy was more
similar among models (Table 3). Again the SVR-RBF model produced
the lowest average RMSE value (0.0667). The other two non-parametric
models, RF and SVR-L, produced the highest average RMSE values, but
they were only 2.06% and 3.35% higher than the SVR-RBF average
RMSE value. The SSM-P was the second most accurate interpolative
model (∼0.9% rRMSE), while SSM-M was the third least accurate in-
terpolative model (1.53% rRMSE). The GL(M)Ms were the third and
fourth most accurate models, with the most simplistic models, GLS and
linear regression, ranked directly below the GL(M)Ms in interpolation
accuracy.

3.2. Model fit comparison

All candidate models included the 24 h Fourier series as an en-
vironmental predictor of nekton density (Table 2). SVR-L is the only
candidate model that did not also include day and tidal range as en-
vironmental predictor variables. Smoothing parameters in the GA(M)
Ms do not exhibit strong nonlinear patterns, which is indicated by their
estimated degrees of freedom (EDF). If a GA(M)Ms EDF is close to 1, the
smoothing parameters can be replaced by a linear term (Wood, 2001).
The only nonlinear smoothing parameter in the parameterized GA(M)
Ms, besides the cyclic time-of-day, is the day covariate (i.e., GAM
EDF = 2.74, GAMM EDF = 2.69) (Fig. 2). All parametric and semi-
parametric regression models also contained the day-tidal range inter-
action predictor variable, except for SSM-M and GAMM. SSM-M and
SVR-RBF are the only candidate models that included tidal speed as a
relevant environmental predictor, except for RF, which included all
environmental predictors and their interactions. The SVR-L and RF
models included up to 26 and 28 h lags in the dependent variable as
model covariates, whereas SVR-RBF only included a 2 h lag.

Final versions of each model included residuals with slight auto-
correlation when fit to the nekton density data except for SVR-L and RF

(Table 2). Candidate models that did not account for autocorrelation
(i.e., linear regression and GAM) included 2 and 24 h correlations in the
residuals. All other generalized regression models and time-series
models included a lag-1 correlation in their autocorrelation structures,
and only exhibited 24 h correlation in the residuals. SVR-RBF had au-
tocorrelated residuals at an 18 h lag, which differed from all other
candidate models. All residuals were homogenous for all candidate
models, indicating that the normality assumption was appropriate for
modeling the distribution of nekton density data.

For the AI data the majority of candidate models included few en-
vironmental predictors (≤ 3 per parameterized model), and no inter-
action effects. All models included the 24 h Fourier series as an en-
vironmental predictor, except for the GLMM, which only included day
and tidal range as predictor variables (Table 3). RF and GAM only

Table 3
Average Root-Mean-Squared-Error (RMSE) and corresponding percent relative RMSE (% rRMSE) ranked order accuracy of each parameterized candidate model from the 10-fold Cross-
Validation model selection for the AI data, including environmental predictors, autocorrelation structure, and error distribution.

Model Average RMSE % rRMSE Environmental Predictors Auto-correlation Structure
(AR,MA)

Error Distribution

SVR- RBF 0.0667 0 Day, Fourier Series, Tidal Speed, Day: Tidal Speed, Tidal Speed:
Fourier Series

(13,0) NA
(0.000920)

SSM-P 0.0673 0.897 Observation Equation: Fourier Series (1,0) Normal
(0.000869)

GLM 0.0674 1.06 Day, Fourier Series NA Gamma
(0.000847) (identity)

GLMM 0.0674 1.06 Day, Tidal Range (1,0) Gamma
(0.000855) (identity)

GLS 0.0675 1.11 Fourier Series (1,0) Normal
(0.000859)

LM 0.0675 1.12 Fourier Series NA Normal
(0.000858)

Reg-ARIMA 0.0675 1.15 Fourier Series (1,2) Normal
(0.000865)

Reg-ARMA-GARCH 0.0675 1.19 Mean Equation: Day, Fourier Series, Tidal Range ARMA: (1,0); Skewed-
(0.000953) Variance Equation: Fourier Series GARCH: (2,0) student-t

GAM 0.0677 1.47 Fourier Series, Tidal Speed NA Gamma
(0.000874) (identity)

GAMM 0.0677 1.52 Fourier Series (2,0) Gamma
(0.000877) (identity)

SSM-M 0.0677 1.53 Process Equation: Day (1,0) Normal
(0.000880) Observation Equation: Day, Fourier Series

RF 0.0681 2.06 Fourier Series, Tidal Speed (2,0) NA
(0.000888)

SVR-L 0.0689 3.35 Day, Fourier Series, Tidal Range, Day: Tidal Range, Tidal Range:
Fourier Series

(1,0) NA
(0.000858)

Notes: Models are ranked in descending order of average RMSE and associated variances of average RMSE are shown in parenthesis. The number of autoregressive (AR) and moving-
average (MA) variables in model autocorrelation structures is shown in parenthesis as (AR, MA). The specified (AR, MA) structure of the nonparametric models indicates the number of
lagged dependent variables included in the parameterized models. The environmental predictors are listed in alphabetical order of main effects followed by interactions.

Fig. 2. Parameterized nonlinear relationship between the demeaned day covariate and
nekton density (Sv). The corresponding EDF was estimated from the GAM. The dashed
line represents 2 standard error bounds on the estimated values (cf. Wood, 2006). Note:
Tidal range is a parametric variable in the parameterized GAM. The day covariate
smoother spline in the GAMM is similarly parameterized (not shown).

H.L. Linder et al. Ecological Indicators 83 (2017) 178–191

183



included tidal speed as a predictor variable in addition to the 24 h
Fourier series. The GLM and SSM-M only included the day predictor
variable in addition to the 24 h Fourier series. The SVR-RBF and SVR-L
models included the highest number of environmental predictors (7
variables), and are the only candidate models that included interaction
effects. Although there are similarities in the parameterization of SVR-L
and SVR-RBF, they differ in their choice of tide covariate and lagged
dependent variable structure (cf. Table 3). The SVR-L and RF models
included fewer lagged dependent variables than SVR-RBF. SVR-L and
RF included 2 and 4 h lags in the dependent variable, whereas SVR-RBF
included up to a 26 h lag in the model.

No parameterized candidate model had autocorrelated residuals
when fit to the nekton AI data. All model residuals were hetero-
skedastic, indicating that no model was able to capture the highly right-
skewed distribution of AI data.

4. Discussion

4.1. Model efficacy

Evaluation of models used to monitor change in ecological in-
dicators have been previously conducted (e.g., Bell and Schlaepfer,
2016; Thomas, 1996; Ward et al., 2014), but results of the evaluations
have not been widely used in management settings, such as re-
commending models for monitoring Marine Renewable Energy pro-
grams. This study illustrates that the choice of model alters data char-
acterization (e.g., Jones-Farrand et al., 2011; Thomas, 1996).
Specifically, state-space models provide a thorough characterization of
baseline monitoring data by accurately interpolating normal and non-
normal data relative to all other candidate models, quantifying para-
metric estimates of environmental predictors, and separating process
from observation error. Nonparametric (i.e., RF, SVR-L, and SVR-RBF)
models also excel in interpolating data, but their predictor variables are
not as interpretable or consistent as SSMs, making them unsuitable for
data characterization. Interpolation accuracy of deterministic para-
metric and semi-parametric models (i.e., Reg-ARMA, reg-GARCH, GLS,
Lin, GL(M)M, and GA(M)M) was lower than SSMs. State-space models
have previously been recommended to characterize renewable energy
monitoring data due to their incorporation of process and observation
error, inclusion of environmental predictors in the model structure, and
predictive abilities (Diffendorfer et al., 2015; Jacques, 2014)

4.1.1. Interpolation accuracy
All nonparametric models excel in interpolating nekton density

data, but SVR-RBF is the only nonparametric model that also accurately
interpolates nekton aggregation data relative to all other candidate
models. RF and SVR models are known for their predictive accuracy
due to their lack of structural assumptions (James et al., 2015). Among
support vector regressions, SVR-RBF models tend to have greater in-
terpolation accuracy than SVR-L models because of their more flexible
nonlinear kernel (e.g., Crone et al., 2006; Kordon, 2009).

State-space models also accurately interpolate nekton density and
aggregation data relative to other candidate models. SSM estimates of
process and observation error, and the lag-1 structure of the process
equation provide flexibility to accurately fit the stochastic nature of
time series data (Dornelas et al., 2013; Hampton et al., 2013). SSM-P
produced a more accurate interpolation of both datasets compared to
SSM-M, because the fixed low measurement error was a more appro-
priate assumption of the variability of linear backscatter values pro-
duced by a stationary echosounder. The more accurate interpolation of
both datasets by the SSM-P compared to the SSM-M can be used to
ensure the most accurate parameterization of a SSM for any baseline
monitoring study that uses a similar sampling method and design as
applied in the case study.

Interpolation accuracy of deterministic parametric and semi-para-
metric models (i.e., Reg-ARMA, reg-GARCH, GLS, Lin, GL(M)M, and

GA(M)M) were generally lower than those of nonparametric and state-
space models. Predicted results from the time-series models, Reg-ARMA
and Reg-ARMA-GARCH, were similar to those from the linear regres-
sion, GLS, GLM, and GLMMs, which is not surprising as these time-
series models are also linear, parametric, and produce deterministic
predictions regardless of their inclusion of autocorrelated error
(Hyndman and Athanasopoulos, 2014). The inability of deterministic
parametric models to accurately estimate complex data patterns re-
lative to more flexible models (see Barry and Elith, 2006; Shmueli,
2010) was validated in the current study based on the average RMSE
results.

4.1.2. Environmental predictors
Even though nonparametric models are flexible and excellent pre-

dictive models, they do not consistently identify the same environ-
mental predictors, and are difficult to interpret relative to all other
evaluated models. The SVR model is known to be highly sensitive to
choice of kernel and tuning parameters, and can be difficult to interpret
(Berk, 2008; Lorena et al., 2011). SVR-L and SVR-RBF models differed
in their environmental predictors, number of lagged dependent vari-
ables, and interpolation accuracy for both nekton density and ag-
gregation data. These differences illustrate the influence of kernel
choice and tuning on model consistency and characterization of data.
Unlike the SVR models, the RF model produces estimates of variable
importance, which enables the RF model to be used in exploratory
analyses to identify relevant predictors of a dataset (Gitzen et al., 2012;
Strobl et al., 2008).

The remaining candidate models provide parametric estimates of
predictor variables, which is an advantage over nonparametric models
for making inferences (James et al., 2015). Parametric models are often
used in MRE monitoring to provide quantitative measures of the am-
plitude and shape of predictor variables, along with uncertainty around
those estimates (Maclean et al., 2014). Selection of predictor variables
by these models was generally consistent for the nekton density data,
with the exception of the SSM-M and GAMM. Differences in proportions
of observation and process error relative to total variability has been
shown to alter parameter estimates of SSM variables (e.g., Dennis et al.,
2006; Ives et al., 2003), and is illustrated by the difference in the SSM-P
and SSM-M 10-fold CV model selection results. Model selection in
GAMs can be affected by autocorrelated data. GAMs are known to over-
fit nonlinear smoother splines in the presence of autocorrelation, while
GAMMs have difficulty converging when estimating both autocorrela-
tion and smoother splines (Wood, 2006, 2015). No model fully char-
acterized the nekton aggregation data, based on the lack of consistent
predictor variables and heteroskedastic residual diagnostics in all
models. Differences in the selection of environmental covariates for the
aggregation index data among candidate models further illustrates ef-
fects of model assumptions and structure on baseline characterization
(cf. Barry and Elith, 2006). For instance, Gamma distributed GL(M)Ms
both include day as a covariate, whereas linear regression and GLS only
include the 24 h Fourier series. Differences in distributional assump-
tions between these models consistently impacted the inclusion of day
as a covariate, regardless of other differences in model structure.

4.1.3. Partitioning of residual error
Explicit parametric estimates of both process and observation error

in the state-space models provides a more biologically accurate and
complete representation of nekton characteristics relative to all other
candidate models. In this study, SSMs are the only evaluated models
that include both process and observation error parameters. Given that
nekton density and behavior are known to vary at MRE monitoring sites
(e.g. Jacques, 2014; Wiesebron et al., 2016), the SSM-P is an appro-
priate choice as it can quantify variability when using high process
error estimates. All deterministic parametric and semi-parametric can-
didate models do not partition error, and implicitly assume all error is
attributed to observation. The SSM-P has the most accurate
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interpolation of nekton density and aggregation compared to all other
parametric candidate models. Partitioning of total error into process
and observation components in state-space models has been shown to
reduce bias and improve accuracy when estimating population abun-
dances (e.g., de Valpine and Hastings, 2002; Lindley, 2003; Ward et al.,
2010). The SSM-P characterized spikes in AI values as natural varia-
bility (i.e. process error), which is a more accurate representation of
nekton behavior than the assumption by all deterministic parametric
models that spikes in aggregation data are observation error, as sup-
ported by a previous study attributing spikes in AI data to a periodic
pattern driven by diel vertical migration (Urmy et al., 2012). Although
nonparametric models produced a more accurate interpolation of
nekton data than SSM-P, nonparametric models provide a less complete
and interpretable characterization of nekton as they do not explicitly
quantify residual model error.

4.2. MRE monitoring model recommendations

Recommendations for characterizing baseline MRE data (Fig. 3) are
derived from the synthesis of model efficacy. Criteria used to re-
commend models include results from the 10-fold CV and residual di-
agnostics.

4.2.1. Normally distributed data
A Random Forest model is recommended to initially identify im-

portant predictor variable(s), coupled with SSM-P to characterize
baseline predictor variables, trends, and variability in normally dis-
tributed data (Fig. 3). CV results and residual diagnostics of the RF
model indicate that it provides an accurate and complete assessment of

autocorrelation and relevant environmental predictors of nekton den-
sity. The RF model may be used for initial exploratory analysis, because
it quantifies the importance of all environmental predictors, but it does
not provide explicit estimates of model parameters or partition ob-
servation and process error in the data.

The SSM-P was the best interpolator of data among parametric and
semi-parametric models. Parametric estimates of process error, mea-
surement error, density-dependence, and predictor variables provide an
interpretable assessment of components needed for baseline char-
acterization. The SSM structure is flexible and adjustable, and may be
altered to include a 24 h lag to remove the observed residual auto-
correlation (Hampton et al., 2013) in the data.

4.2.2. Non-normally distributed data
No model fully characterized the AI data, based on residual diag-

nostics and 10-fold CV results. The model evaluation may not have
identified a model that accurately captured all properties of the non-
normal baseline data, but it did highlight advantages of using a state-
space model to characterize the data. SSM-P was the most accurate
parametric model and characterized spikes in the AI data as process
error, which is more biologically accurate than the assumption of spikes
as observation error (as inferred in all deterministic parametric/semi-
parametric models). For the non-normal, spikey data, a Box-Cox power
transformation (Box and Cox, 1964) may be necessary to fit the normal
distribution assumption of a SSM. Alternatively, a non-normal, state-
space model may be used to provide an accurate interpolation of data,
and to reduce heteroskedasticity in the residuals. To fully model spikes
in the AI data, it may also be necessary to fit a state-space model that
characterizes spikes as more than process error. As an example, a
Markovian switching, state-space model is capable of modeling AI data
as a two-state structure, with the probability of being in the low or high
state dependent on the state at the previous time-step (Ghahramani and
Hinton, 2000).

4.3. Implications of model evaluation for ecological monitoring programs

Model evaluation enables direct assessment of model behavior,
advantages, and constraints used to identify the most appropriate
model(s) for meeting ecological objectives (e.g., Elith and Graham,
2009; Olden and Jackson, 2002). This evaluation demonstrated the
effect of model choice and parameterization on the characterization of
baseline data, and identified state-space models as most applicable for
characterizing baseline MRE monitoring data. State-space models con-
sistently produced the most accurate parametric interpolation of nekton
data. The evaluation of a range of models provides a thorough and
complete characterization of ecological data (Jones-Farrand et al.,
2011) that can be used to identify best practices for efficient and ac-
curate baseline ecological characterization, and can be used in the de-
sign of operational MRE monitoring programs.

Accurate estimates of baseline variability is critical to designing a
monitoring program that has the power to detect change outside the
natural range of variability (Klure et al., 2012; McCann, 2012). Baseline
estimates of variability can be used in power analyses to calculate the
sample size needed detect a predetermined magnitude of change in
operational monitoring (Carey and Keough, 2002). In this study, the
evaluation assessed baseline nekton variability with the cross-valida-
tion results highlighting the ability of nonparametric and SSM-P models
to accurately interpolate baseline data relative to all candidate models.
This result suggests that the data have a highly variable range around
the mean, because flexible models and the assumption of high natural
variability (i.e., process error) were required to accurately predict the
structure of the data. Partitioning residual variability as process and
observation error in a state-space model provides an additional as-
sessment of variability that can be used to formulate sampling designs
for MRE monitoring programs. If estimated process error in a state-
space model is greater than observation error, then the number of

Fig. 3. Schematic of recommended models to characterize environmental receptor in-
dicators. An example framework for MRE monitoring consists of an environmental
stressor (i.e., MRE development), a monitored receptor (i.e., fish), indicators of the state
of fish (i.e., abundance and behavior), and demonstrative normal and non-normally
distributed metrics representative of indicators (i.e., density (Sv) and patchiness
(Aggregation Index)). The dashed box indicates the need for further evaluation to identify
a two state, state-space model for characterization of aggregation index data.
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samples must be increased, relative to baseline sampling, to improve
precision of model fit (e.g., See and Holmes, 2015). If the estimate of
process error is less than observation error, then fewer samples are
needed to reach the same target precision of model fit, which reduces
monitoring costs. Reducing monitoring costs through fewer samples is
especially valuable when using traditional sampling techniques (e.g.,
trawl surveys) that are associated with higher costs per sample than
remote sensing data such as active acoustics used in the case study.

The pattern and structure of environmental variables included in
the final version of each candidate model provides insight into im-
portant predictors of nekton density and aggregation. Consistent se-
lection of day, 24-h Fourier series, and tidal range as covariates among
almost all candidate models reduces the uncertainty of the importance
of these variables as environmental predictors of nekton density
(Burnham and Anderson, 2002; Johnson and Omland, 2004). The in-
clusion of day as a predictor of nekton density infers a trend over time.
The GA(M)M results suggest that this trend is slightly concave, but the
greater interpolation accuracy of the SSMs suggest that the data are not
strongly nonlinear, and that a linear trend within a stochastic model is a
more appropriate representation of the data. The synthesis of these
results is vital given that environmental predictors in baseline models
and their relationship (i.e., size and shape) to the dependent variable
are used to identify and understand potential effects of development on
the ecosystem (Treweek, 1996), and in the design of sampling resolu-
tions and data collection methods in monitoring programs (Boehlert
et al., 2013; Klure et al., 2012; McCann, 2012).

The model evaluation provides a baseline characterization of eco-
logical indicators for MRE environmental monitoring, with the ap-
proach and results being applicable for reducing uncertainty in the
analysis of ecological indicator data used for any environmental man-
agement program. For example, metric data derived from acoustic
monitoring enable an effective assessment of fish health indicators
(Trenkel et al., 2011) for population assessments (Jennings, 2005)
within Ecosystem Based Fishery Management (EBFM) (Large et al.,
2013; Trenkel et al., 2011). Recommended models are also applicable
for the characterization of any ecological indicators that use metrics
with similar data properties as the case study. For example, the RF and
SSM combination recommended for characterizing nekton density is
applicable for any temporally continuous, normally distributed metric
data. The development of best practices for the characterization of
ecological indicator data is invaluable for any monitoring program,
because standardizing monitoring methods reduces uncertainty in the
assessment of environmental change, and provides comparable data
across time and monitoring sites to produce the most efficient en-
vironmental monitoring programs (Froján et al., 2016).

5. Conclusion

This study was motivated by the absence of model evaluations
capable of characterizing MRE baseline monitoring data. Including all
primary classes of regression models provided a palette of candidate
models that could be used to characterize normal and non-normal data.
The recommended Random Forest and SSMs have not been commonly
used in MRE monitoring studies. The standardization of MRE mon-
itoring, including the choice of analytic model, is predicted to reduce
cost and uncertainty in MRE permitting in the United States (Dubbs
et al., 2013) and consenting in the United Kingdom.

Assumptions were required to ensure a comprehensive and gen-
eralizable model evaluation, and best practice recommendations for
analyzing baseline MRE ecological indicator data. The data used in the
case study was assumed representative of MRE site baseline data.
Models used in the evaluation were assumed to be representative of
regression models commonly used in ecological monitoring studies.
Mechanistic or Bayesian models were not used to characterize baseline
data, but could be evaluated using the same approach. A quantitative
comparison of parameter estimates and statistical significance values in
top performing parametric models may advance the understanding of
model accuracy and baseline characterization.

This study used an evaluation to recommend statistical models
capable of characterizing baseline conditions of ecological indicators in
environmental monitoring programs. There is an additional need to
accurately detect change relative to baseline conditions during MRE
operations. To guarantee consistent and comparable results in baseline
and operational monitoring, the same techniques should be used during
both phases of MRE site development. Therefore, models used for
baseline characterization must also be able to detect and forecast
change in monitoring variables. An additional evaluation of model
ability to detect change is needed to complete a best practice procedure
for analyzing Marine Renewable Energy environmental monitoring
data.
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Appendix A. Glossary of defined abbreviations

Table A1
Abbreviated terms and the associated definitions listed by order of occurrence.

Order of
Occurrence

Abbreviation Defined Term

1 MRE Marine Renewable Energy Company
2 ORPC Ocean Renewable Power Company
3 GL(M)Ms Genearlized Linear (Mixed) Models
4 GA(M)Ms Generalized Additive (Mixed) Models
5 Sv mean volume backscattering strength
6 AI aggregation index
7 GLS Generalized Least Squares
8 BACI Before-After Control-Impact
9 ANOVA analysis of variance
10 Reg-(AR)(MA) Regression-(Autoregressive) (Moving

Average)
11 Reg-ARMA-

GARCH
Regression-Autoregressive Moving
Average-Generalized Autoregressive
Conditional Heteroskedasticity

12 SSM State-Space Model
13 SSM-P State-Space Model-Process (version of SSM

with estimated high process error)
14 SSM-M State-Space Model-Measurement (version

of SSM with estimated high measurement
error)

15 RF Random Forest
16 SVR Support Vector Regression
17 SVM Support Vector Machine
18 SVR-L Support Vector Regression-Linear (version

of SVR that uses a linear kernel)
19 SVR-RBF Support Vector Regression-Radial Basis

Function (version of SVR that uses a radial
basis function kernel)

20 CV cross-validation
21 RMSE Root Mean Squared Error
22 GR Generalized Regression
23 NP Nonparametric
24 ACF Autocorrelation Function
25 mtry Number of predictor variables in a

Random Forest regression
26 rRMSE relative Root Mean Squared Error
27 EDF Estimated Degrees of Freedom
28 EBFM Ecosystem Based Fishery Management
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Appendix B. : Detailed model methods

1. Candidate model equations and definition of terms

1. Linear Regression

= + + ∼y a bx ε ε Normal σ, (0, )2 (eq.B.1)

The intercept term is α, b is the estimated parameter term, x is the predictor variable, ε is the error term, and σ2 is the variance of the error
distribution.

2. Generalized Least Squares (GLS)

= + + ∼y a bx ε ε Normal σ V, (0, )2 (eq.B.2)

The GLS model is similar to the linear regression model, but the V term represents a matrix that accounts for autocorrelation in the residual
correlation structure.

3. Generalized Linear Model (GLM)

= + + =g a bx ε(μ) , μ E(y) (eq.B.3)

g() is the link function, which relates the linear predictor to the expected value (μ) of the exponential family distribution function.

4. Generalized Linear Mixed Model (GLMM)

= + + + + =g a X B Z b a e yi(μ) , μ E( )i i i i i (eq.B.4)

XiB represents the main effects in the GLM equation. Xi is the design matrix for the predictor variables, and B is the matrix of predictor variables.
Zibi represents the random effects component of a GLMM. Zi is the design matrix for the random effects, and bi is the subject, i, specific effect (or
random effect). ai is the random intercept.

5. Generalized Additive (Mixed) Model GA(M)M

= + + + =g μ a bx f x ε μ E y( ) ( ) , ( ) (eq.B.5)

f() is a smooth function. The GAMM can be written similarly to the GLMMwith the inclusion of smooth functions (cf. Lin and Zhang, 1999; Wood 2006).

Table B1
Summary of candidate model parameterization.

Model Parameterization R function/package References

Linear – lm/stats (v.3.1.2) –
GLS – gls/nlme (3.1.118) –
GLM Gamma response with identity link function glm/stats (v.3.1.2) Polgreen and Brooks (2012)
GLMM Random intercept = 24 h count index glmmPQL/MASS (v.7.3.35) Pinheiro (2000)
GAM 24 h count index = cyclic cubic spline gam/mgcv (v.1.8.3) Wood (2006, 2015)

All other environmental covariates = thin-plate splines with
shrinkage*

All interaction terms = tensor product interaction
GAMM Identical to GAM gamm/mgcv (v.1.8.3) Wood (2006, 2015)

Maximum iterations of optimization = 1000†

Reg-ARMA Fitting method =Maximum Likelihood Arima/forecast (v.6.2) Hyndman (2015)
Reg-ARMA-GARCH Model = ‘sGarch' (standard GARCH) ugarchfit/rugarch (v.1.3.6) Hu and Kercheval (2008), Ghalanos

(2015)Skewed-student-t response (non-normal data)
Parameter estimation solver = “hybrid”

SSM-M B = “unconstrained” MARSS/MARSS (v.3.9) Holmes et al. (2014)
u = “unconstrained”
Q= 0.1658484 (normal), 4.893103e-05 (non-normal)
Initial state set at time t = 1
Maximum iterations of optimization = 10000

SSM-P B = “unconstrained” MARSS/MARSS (v.3.9) Holmes et al. (2014)
u = “unconstrained”
R = 0.1658484 (normal), 4.893103e-05 (non-normal)
Initial state set at time t = 1
Maximum iterations of optimization = 10000

RF Ntree = 2500 (normal), 500 (non-normal) randomForest/randomForest (v.4.6.10) Liaw and Wiener (2002)
SVR-L C = 0.0104 (normal), 2.56 (non-normal) svm/e1071 (v.1.6.4) Berk (2008); Hsu et al. (2010)
SVR-RBF C = 1.25 (normal), 2.11 (non-normal) svm/e1071 (v.1.6.4) Berk (2008); Hsu et al. (2010)

Gamma = 0.402 (normal), 0.0957 (non-normal)

Note: The parameterization of the error distribution in the GLM model was applied to the GLMM, GAM, and GAMM model for the non-normal Aggregation Index data.
* If the estimated degrees of freedom of smoother terms was near 1 then the smooth was replaced with a parametric term and the results from the 10-fold CV model selection process

were re-calculated.
† See supplemental code for exact specification of GAMM iterations. If model parameterization is not specified the defaults in each R package were used to fit models.
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6. Regression-Autoregressive-Moving-Average (Reg-ARMA) Model

= + + … +y a b x b x nt t p pt t1 1 (eq.B.6)

= + … + + + …+ ∼− − − −n b n b n e θ e θ e e Normal σ; (0, )t t p t p t t q t q t1 1 1 1

nt is the error remaining from the linear regression model. b1-bp are parameters multiplied to the lagged error terms. θ1 − θq are parameters
multiplied to the moving-average components of the ARMA model.

7. Reg-ARMA-Generalized-Autoregressive-Conditional-Heteroskedasticity- Autoregressive-Moving-Average (Reg-ARMA-GARCH) Model
A Reg-ARMA-GARCH model is similar to a Reg-ARMA model with the addition of modeled residual variance:

= + + …+ + + …+− − − −σ w α ε α ε β σ β σt t q t q t p t p
2

1 1
2 2

1 1
2 2

(eq.B.7)

σt
2 denotes the conditional variance, w is the intercept, α1-αq and β1-βp are parameters multiplied to the lagged residuals and conditional variance

terms.

8. Multivariate-Autoregressive-State-Space (MARSS) Model

= + + + ∼−x B x u C c w w MVN QProcess equation: , (0, )t t t t t t t t t1 (eq.B.8)

= + + ∼y x D d v v MVN RObservation equation: , (0, )t t t t t t t

The process model contains a density-dependent parameter (Bt), a mean level parameter (ut), independent parameters (Ct) multiplied to predictor
variables (ct), and error (wt) that is normally distributed with variance Qt. The observation model also includes independent covariates (Dt), predictor
variables (dt), and error (vt) that is normally distributed with variance Rt (cf. Holmes et al., 2014).

9. Random Forest (RF) Algorithm
The Random Forest is a collection of ntrees that are random bootstrap subsamples of the training data. Samples not selected for model training are

used as out-of-sample data to calculate error of the model. Within each tree, a randomly chosen subsample of the predictor variables (mtry) are used
to fit the data. The predictor variable and split of the data based on the predictor variable that produce the best estimate of the dependent variable
based on Mean-Squared-Error (MSE) are calculated. This process is repeated until 5 data points remain in each node of the tree. The final predicted
values are based on the average of the individual tree predictions.

10. Support Vector Regression (SVR)
If the linear regression function is denoted asyi = wxi + b, in which b is the intercept term, w is the estimated parameter term, xi is the predictor

variable, then the minimization attempted by an SVR is denoted as:

∑= + +
=

Q w C1
2

(ε ε*)
i

l

i i
2

1 (eq.B.9)

Subject to {yi − wxi − b≤ ε + Ei; + − ≤ +wx b y Eε *i i i ; ≥E E, * 0i i } (Vapnik, 1995)
In this equation C is the “cost” constant that represents the value up to which deviations from Ɛ, a predefined value of residual error, are

acceptable. E and E* are error values above (E) and below (E*) Ɛ that allow for the optimization problem to be feasible (Smola and Schölkopf, 2004;
Thissen et al., 2003).

The linear kernel is calculated as:

=K x x x x( , ) ( )i j i
T

j (eq.B.10)

The Radial Basis Function kernel is calculated as

= − − >K x x x x( , ) exp( γ ), γ 0i j i j
2 (eq.B.11)

xi and xj are two input vectors, and the gamma value (γ) controls the width of the kernel (Thissen et al., 2003).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ecolind.2017.07.015.
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